In [ ]:
Copied!
# %pip install geoai-py
# %pip install geoai-py
Import libraries¶
In [ ]:
Copied!
import geoai
import geoai
Download sample data¶
In [ ]:
Copied!
raster_url = (
"https://huggingface.co/datasets/giswqs/geospatial/resolve/main/naip_train.tif"
)
vector_url = "https://huggingface.co/datasets/giswqs/geospatial/resolve/main/naip_train_buildings.geojson"
raster_url = (
"https://huggingface.co/datasets/giswqs/geospatial/resolve/main/naip_train.tif"
)
vector_url = "https://huggingface.co/datasets/giswqs/geospatial/resolve/main/naip_train_buildings.geojson"
In [ ]:
Copied!
raster_path = geoai.download_file(raster_url)
raster_path = geoai.download_file(raster_url)
In [ ]:
Copied!
vector_path = geoai.download_file(vector_url)
vector_path = geoai.download_file(vector_url)
Initialize building footprint extraction pretrained model¶
In [ ]:
Copied!
extractor = geoai.BuildingFootprintExtractor()
extractor = geoai.BuildingFootprintExtractor()
In [ ]:
Copied!
mask_path = extractor.save_masks_as_geotiff(
raster_path=raster_path,
output_path="building_masks.tif",
confidence_threshold=0.5,
mask_threshold=0.5,
)
mask_path = extractor.save_masks_as_geotiff(
raster_path=raster_path,
output_path="building_masks.tif",
confidence_threshold=0.5,
mask_threshold=0.5,
)
Convert raster to vector
In [ ]:
Copied!
gdf = extractor.masks_to_vector(
mask_path=mask_path,
output_path="building_masks.geojson",
simplify_tolerance=1.0,
)
gdf = extractor.masks_to_vector(
mask_path=mask_path,
output_path="building_masks.geojson",
simplify_tolerance=1.0,
)
Option 2: Extract building footprints as vector¶
In [ ]:
Copied!
output_path = "naip_buildings.geojson"
gdf = extractor.process_raster(
raster_path,
output_path="buildings.geojson",
batch_size=4,
confidence_threshold=0.5,
overlap=0.25,
nms_iou_threshold=0.5,
min_object_area=100,
max_object_area=None,
mask_threshold=0.5,
simplify_tolerance=1.0,
)
output_path = "naip_buildings.geojson"
gdf = extractor.process_raster(
raster_path,
output_path="buildings.geojson",
batch_size=4,
confidence_threshold=0.5,
overlap=0.25,
nms_iou_threshold=0.5,
min_object_area=100,
max_object_area=None,
mask_threshold=0.5,
simplify_tolerance=1.0,
)
Regularize building footprints¶
In [ ]:
Copied!
gdf_regularized = extractor.regularize_buildings(
gdf=gdf,
min_area=100,
angle_threshold=15,
orthogonality_threshold=0.3,
rectangularity_threshold=0.7,
)
gdf_regularized = extractor.regularize_buildings(
gdf=gdf,
min_area=100,
angle_threshold=15,
orthogonality_threshold=0.3,
rectangularity_threshold=0.7,
)
Visualize building footprints¶
In [ ]:
Copied!
gdf.head()
gdf.head()
In [ ]:
Copied!
geoai.view_vector_interactive(
gdf, column="confidence", layer_name="Building", tiles="Satellite"
)
geoai.view_vector_interactive(
gdf, column="confidence", layer_name="Building", tiles="Satellite"
)
In [ ]:
Copied!
geoai.view_vector_interactive(
gdf, column="confidence", layer_name="Building", tiles=raster_url
)
geoai.view_vector_interactive(
gdf, column="confidence", layer_name="Building", tiles=raster_url
)
In [ ]:
Copied!
geoai.view_vector_interactive(
gdf_regularized, column="confidence", layer_name="Building", tiles=raster_url
)
geoai.view_vector_interactive(
gdf_regularized, column="confidence", layer_name="Building", tiles=raster_url
)
In [ ]:
Copied!
extractor.visualize_results(raster_path, gdf, output_path="naip_buildings.png")
extractor.visualize_results(raster_path, gdf, output_path="naip_buildings.png")
In [ ]:
Copied!
extractor.visualize_results(
raster_path, gdf_regularized, output_path="naip_buildings_regularized.png"
)
extractor.visualize_results(
raster_path, gdf_regularized, output_path="naip_buildings_regularized.png"
)