In [ ]:
Copied!
# %pip install geoai-py
# %pip install geoai-py
Import libraries¶
In [ ]:
Copied!
import geoai
import geoai
Retrieve collections¶
In [ ]:
Copied!
collections = geoai.pc_collection_list()
collections
collections = geoai.pc_collection_list()
collections
Search NAIP imagery¶
In [ ]:
Copied!
items = geoai.pc_stac_search(
collection="naip",
bbox=[-76.6657, 39.2648, -76.6478, 39.2724], # Baltimore area
time_range="2013-01-01/2014-12-31",
)
items = geoai.pc_stac_search(
collection="naip",
bbox=[-76.6657, 39.2648, -76.6478, 39.2724], # Baltimore area
time_range="2013-01-01/2014-12-31",
)
In [ ]:
Copied!
items
items
Visualize NAIP imagery¶
In [ ]:
Copied!
geoai.pc_item_asset_list(items[0])
geoai.pc_item_asset_list(items[0])
In [ ]:
Copied!
geoai.view_pc_item(item=items[0])
geoai.view_pc_item(item=items[0])
Download NAIP imagery¶
In [ ]:
Copied!
downloaded = geoai.pc_stac_download(
items, output_dir="data", assets=["image", "thumbnail"]
)
downloaded = geoai.pc_stac_download(
items, output_dir="data", assets=["image", "thumbnail"]
)
Search land cover data¶
In [ ]:
Copied!
items = geoai.pc_stac_search(
collection="chesapeake-lc-13",
bbox=[-76.6657, 39.2648, -76.6478, 39.2724], # Baltimore area
time_range="2013-01-01/2014-12-31",
max_items=10,
)
items = geoai.pc_stac_search(
collection="chesapeake-lc-13",
bbox=[-76.6657, 39.2648, -76.6478, 39.2724], # Baltimore area
time_range="2013-01-01/2014-12-31",
max_items=10,
)
In [ ]:
Copied!
items
items
Visualize land cover data¶
In [ ]:
Copied!
geoai.pc_item_asset_list(items[0])
geoai.pc_item_asset_list(items[0])
In [ ]:
Copied!
geoai.view_pc_item(item=items[0], colormap_name="tab10", basemap="SATELLITE")
geoai.view_pc_item(item=items[0], colormap_name="tab10", basemap="SATELLITE")
Download land cover data¶
In [ ]:
Copied!
geoai.pc_stac_download(items[0], output_dir="data", assets=["data", "rendered_preview"])
geoai.pc_stac_download(items[0], output_dir="data", assets=["data", "rendered_preview"])
In [ ]:
Copied!
ds = geoai.read_pc_item_asset(items[0], asset="data")
ds = geoai.read_pc_item_asset(items[0], asset="data")
In [ ]:
Copied!
ds
ds
Search Landsat data¶
In [ ]:
Copied!
items = geoai.pc_stac_search(
collection="landsat-c2-l2",
bbox=[-76.6657, 39.2648, -76.6478, 39.2724], # Baltimore area
time_range="2024-10-27/2024-12-31",
query={"eo:cloud_cover": {"lt": 1}},
max_items=10,
)
items = geoai.pc_stac_search(
collection="landsat-c2-l2",
bbox=[-76.6657, 39.2648, -76.6478, 39.2724], # Baltimore area
time_range="2024-10-27/2024-12-31",
query={"eo:cloud_cover": {"lt": 1}},
max_items=10,
)
In [ ]:
Copied!
items
items
Visualize Landsat data¶
In [ ]:
Copied!
geoai.pc_item_asset_list(items[0])
geoai.pc_item_asset_list(items[0])
In [ ]:
Copied!
geoai.view_pc_item(item=items[0], assets=["red", "green", "blue"])
geoai.view_pc_item(item=items[0], assets=["red", "green", "blue"])
In [ ]:
Copied!
geoai.view_pc_item(item=items[0], assets=["nir08", "red", "green"])
geoai.view_pc_item(item=items[0], assets=["nir08", "red", "green"])
In [ ]:
Copied!
geoai.view_pc_item(
item=items[0],
expression="(nir08-red)/(nir08+red)",
rescale="-1,1",
colormap_name="greens",
name="NDVI Green",
)
geoai.view_pc_item(
item=items[0],
expression="(nir08-red)/(nir08+red)",
rescale="-1,1",
colormap_name="greens",
name="NDVI Green",
)
Download Landsat data¶
In [ ]:
Copied!
geoai.pc_stac_download(
items[0], output_dir="data", assets=["nir08", "red", "green", "blue"]
)
geoai.pc_stac_download(
items[0], output_dir="data", assets=["nir08", "red", "green", "blue"]
)