hf module¶
This module contains utility functions for working with Hugging Face models.
get_model_config(model_id)
¶
Get the model configuration for a Hugging Face model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
str
|
The Hugging Face model ID. |
required |
Returns:
Type | Description |
---|---|
transformers.configuration_utils.PretrainedConfig: The model configuration. |
Source code in geoai/hf.py
15 16 17 18 19 20 21 22 23 24 25 |
|
get_model_input_channels(model_id)
¶
Check the number of input channels supported by a Hugging Face model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
str
|
The Hugging Face model ID. |
required |
Returns:
Name | Type | Description |
---|---|---|
int |
The number of input channels the model accepts. |
Raises:
Type | Description |
---|---|
ValueError
|
If unable to determine the number of input channels. |
Source code in geoai/hf.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
|
image_segmentation(tif_path, output_path, labels_to_extract=None, dtype='uint8', model_name=None, segmenter_args=None, **kwargs)
¶
Segments an image with a Hugging Face segmentation model and saves the results as a single georeferenced image where each class has a unique integer value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tif_path
|
str
|
Path to the input georeferenced TIF file. |
required |
output_path
|
str
|
Path where the output georeferenced segmentation will be saved. |
required |
labels_to_extract
|
list
|
List of labels to extract. If None, extracts all labels. |
None
|
dtype
|
str
|
Data type to use for the output mask. Defaults to "uint8". |
'uint8'
|
model_name
|
str
|
Name of the Hugging Face model to use for segmentation, such as "facebook/mask2former-swin-large-cityscapes-semantic". Defaults to None. See https://huggingface.co/models?pipeline_tag=image-segmentation&sort=trending for options. |
None
|
segmenter_args
|
dict
|
Additional arguments to pass to the segmenter. Defaults to None. |
None
|
**kwargs
|
Additional keyword arguments to pass to the segmentation pipeline |
{}
|
Returns:
Name | Type | Description |
---|---|---|
tuple |
(Path to saved image, dictionary mapping label names to their assigned values, dictionary mapping label names to confidence scores) |
Source code in geoai/hf.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
|
mask_generation(input_path, output_mask_path, output_csv_path, model='facebook/sam-vit-base', confidence_threshold=0.5, points_per_side=32, crop_size=None, batch_size=1, band_indices=None, min_object_size=0, generator_kwargs=None, **kwargs)
¶
Process a GeoTIFF using SAM mask generation and save results as a GeoTIFF and CSV.
The function reads a GeoTIFF image, applies the SAM mask generator from the Hugging Face transformers pipeline, rasterizes the resulting masks to create a labeled mask GeoTIFF, and saves mask scores and geometries to a CSV file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_path
|
str
|
Path to the input GeoTIFF image. |
required |
output_mask_path
|
str
|
Path where the output mask GeoTIFF will be saved. |
required |
output_csv_path
|
str
|
Path where the mask scores CSV will be saved. |
required |
model
|
str
|
HuggingFace model checkpoint for the SAM model. |
'facebook/sam-vit-base'
|
confidence_threshold
|
float
|
Minimum confidence score for masks to be included. |
0.5
|
points_per_side
|
int
|
Number of points to sample along each side of the image. |
32
|
crop_size
|
Optional[int]
|
Size of image crops for processing. If None, process the full image. |
None
|
band_indices
|
Optional[List[int]]
|
List of band indices to use. If None, use all bands. |
None
|
batch_size
|
int
|
Batch size for inference. |
1
|
min_object_size
|
int
|
Minimum size in pixels for objects to be included. Smaller masks will be filtered out. |
0
|
generator_kwargs
|
Optional[Dict]
|
Additional keyword arguments to pass to the mask generator. |
None
|
Returns:
Type | Description |
---|---|
Tuple[str, str]
|
Tuple containing the paths to the saved mask GeoTIFF and CSV file. |
Raises:
Type | Description |
---|---|
ValueError
|
If the input file cannot be opened or processed. |
RuntimeError
|
If mask generation fails. |
Source code in geoai/hf.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
|